Title: Nitrogen-responsive small peptide signaling pathways modulating root system architecture in plants
Lecturer: Dr. Hideki Takahashi, Michigan State University
Time: November 30, 15:00
Venue: Lecture Hall B211, College of Resources and Environmental Sciences
Biography:
Hideki Takahashi, Department of Biochemistry and Molecular Biology, Michigan State University.Biochemistry, molecular biology, genetics, genomics, and genetic engineering of plants; Molecular mechanisms of sulfur and nitrogen assimilation and signaling: Dr. Hideki Takahashi has been leading his research group in academia for 18 years, first appointed as a research team leader at RIKEN in 2000 and then faculty at Michigan State University since 2010. Over the past 20 years of career, his research has been focused on metabolic and morphological strategies that plants have developed to optimize nitrogen (N) and sulfur (S) assimilation and root growth in the environment. Uptake and metabolism of N and S are coordinately regulated when plants acclimate to the environment. Nutrient uptake can also be affected by morphological signals that modulate the root system architecture in response to changes in nutrient availabilities. Dr. Takahashi’s laboratory investigates plant root functions, metabolism and nutrient signaling pathways based on these organizing concepts and by taking advantage of plant genome information and functional genomics approaches. His research program provides a unique perspective at the interface of plant metabolic and developmental biology, elucidating genetic traits associated with macronutrient sensing and signaling mechanisms in plants.
Publications:
1. Maruyama-Nakashita, A., Suyama, A., Takahashi, H. (2017). 5′-non-transcribed flanking region and 5′-untranslated region play distinctive roles in sulfur deficiency induced expression of SULFATE TRANSPORTER 1;2 in Arabidopsis roots. Plant Biotechnol. 34, 51–55. doi: 10.5511/plantbiotechnology.
16.1226a 2. Konishi, N., Ishiyama, K., Beier, M.P., Inoue, E., Kanno, K., Yamaya, T., Takahashi, H., Kojima, S. (2017). Contributions of two cytosolic glutamine synthetase isozymes to ammonium assimilation in Arabidopsis roots. J. Exp. Bot. 68: 613–625. doi: 10.1093/jxb/erw454 3. Aarabi, F., Kusajima, M., Tohge, T., Konishi, T., Gigolashvili, T., Takamune, M., Sasazaki, Y., Watanabe, M., Nakashita, H., Fernie, A.R., Saito, K., Takahashi, H., Hubberten, H.M., Hoefgen, R., Maruyama-Nakashita, A. (2016). Sulfur deficiency-induced repressor proteins optimize glucosinolate biosynthesis in plants. Sci. Adv. 2(10): e1601087. doi: 10.1126/sciadv.1601087 4. Yoshimoto, N., Kataoka, T., Maruyama-Nakashita, A., and Takahashi, H. (2016). Measurement of uptake and root-to-shoot distribution of sulfate in Arabidopsis seedlings. Bio-Protocol 6(1): e1700. http://www.bio-protocol.org/e1700 5. Araya, T., Kubo, T., von Wirén, N., and Takahashi, H. (2016). Statistical modeling of nitrogen-dependent modulation of root system architecture in Arabidopsis thaliana. J. Integr. Plant. Biol. 58: 254–265. doi: 10.1111/jipb.12433 (Root Architecture Special Issue, Ed. Leon Kochian) 6. Maruyama-Nakashita, A., Watanabe-Takahashi, A., Inoue, E., Yamaya, T., Saito, K., and Takahashi, H. (2015). Sulfur-responsive elements in the 3’-nontranscribed intergenic region are essential for the induction of SULFATE TRANSPORTER 2;1 gene expression in Arabidopsis roots under sulfur deficiency. Plant Cell 27: 1279–1296. 7. Bohrer, A.-S., Yoshimoto, N., Sekiguchi, A., Rykulski, N., Saito, K., and Takahashi, H. (2015). Alternative translational initiation of ATP sulfurylase underlying dual localization of sulfate assimilation pathways in plastids and cytosol in Arabidopsis thaliana. Front. Plant Sci. 5: 750. doi: 10.3389/fpls.2014.00750 8. Araya, T., Miyamoto, M., Wibowo, J., Suzuki, A., Kojima, S., Tsuchiya, Y.N., Sawa, S., Fukuda, H., von Wirén, N., and Takahashi, H. (2014). CLE-CLAVATA1 peptide-receptor signaling module regulates the expansion of plant root systems in a nitrogen-dependent manner. Proc. Natl. Acad. Sci. USA 111: 2029–2034.